If it's not what You are looking for type in the equation solver your own equation and let us solve it.
400x^2+80x-5=0
a = 400; b = 80; c = -5;
Δ = b2-4ac
Δ = 802-4·400·(-5)
Δ = 14400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{14400}=120$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(80)-120}{2*400}=\frac{-200}{800} =-1/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(80)+120}{2*400}=\frac{40}{800} =1/20 $
| (4x−7)2+16=40x−70 | | (4x−7)2+16=40x−70(4x-7)^2+16=40x-70(4x−7)2+16=40x−7 | | (x-7)(x=2) | | x÷10+7=4 | | 0.15(w + 2) = 0.3 + 0.2w | | 25x^2+5x=5/16 | | 12+x+(-18)=-32 | | -11+x+-3=-21 | | n/4=3.2 | | 1/2(4x-7)-1/3(1-4x)=6 | | 60=-4.9x^2+19.6x+58.8 | | 41=5/9(f-32) | | 19q-34q=1q-16q | | -2y/3=4 | | x^-23x=0 | | 5x-1=7,98 | | x-3.87=-10.1 | | 2z÷7+7=-6 | | x-(5/9)=-(5/6) | | 3+2q=1q | | x+5.27=2.1 | | 3+2q=1+1q | | −5(p+5/3)=4 | | -3v/7=6 | | x^2-2x-8.75=0 | | 1.75=(2x^2)/((1.09-x)(1.09-x) | | 8.1=0.9m | | 3x1-7,98=x | | 3(b-18)=6b | | –7j=–3−10j | | 25x+2=12x+11 | | 3x+13=9+5x |